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Braided chains of q-deformed Heisenberg algebras

Gaetano Fiore†
Sektion Physik der Ludwig-Maximilians-Universität München, Theoretische Physik—Lehrstuhl
Professor Wess, Theresienstraße 37, 80333 München, Germany

Received 13 January 1998

Abstract. Given M copies of a q-deformed Weyl or Clifford algebra in the defining
representation of a quantum groupGq , we determine a prescription to embed them into a
unique, inclusiveGq -covariant algebra. The different copies are ‘coupled’ to each other and
are naturally ordered into a ‘chain’. In the caseGq = SLq(N) a modified prescription yields
an inclusive algebra which is even explicitlyGLq(M)× SLq(N)-covariant, whereSLq(M) is
a symmetry relating the different copies. By the introduction of these inclusive algebras we
significantly enlarge the class ofGq -covariant deformed Weyl/Clifford algebras available for
physical applications.

1. Introduction

Weyl and Clifford algebras (respectively denoted byA+,A− and collectively as ‘Heisenberg
algebras’) are at the heart of quantum physics. The most useful Heisenberg algebras are
those endowed with definite transformation properties under the action of some symmmetry
Lie groupG (or Lie algebrag).

The idea that quantum groups [1] could generalize Lie groups in describing symmetries
of quantum physical systems has attracted much interest in the past decade. Mathematically
speaking, a quantum group can be described as a deformation Fun(Gq) of the algebra
Fun(G) of regular functions onG or, in the dual picture, as a deformationUqg of the
universal enveloping algebraUg, within the category of (quasitriangular) Hopf algebras;
hereq = eh, andh is the deformation parameter. Theseq-deformations induce matched
q-deformations of all Fun(Gq)-comodule algebras (i.e. of the algebras whose generators
satisfy commutation relations that are preserved by the Fun(Gq)-coaction), in particular
of G-covariant Heisenberg algebras.q-deformed Heisenberg algebras corresponding to
a simple Lie algebrag in the classical seriesAn,Bn,Dn were introduced in [2–5] in the
restricted case that the generatorsA+i , A

i belong respectively to the defining corepresentation
φd of Fun(Gq) and to its contragradientφ∨d .

In general, we shall denote byA±,G,φ the Weyl/Clifford algebra with generatorsai, a+i
belonging respectively to some corepresentationφ of G and to its contragradientφ∨ and
fulfilling the canonical (anti)commutation relations

a+i a
+
j ∓ a+j a+i = 0 (1.1)

aiaj ∓ ajai = 0 (1.2)

aia+j − δij1∓ a+j ai = 0. (1.3)
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The purpose of this work is to find out whether there exists someGq-covariant deformation
of A±,G,φ (which we will denote byAq±,G,φ) having the same Poincaré series asA±,G,φ .
We shall denote the generators ofAq±,G,φ by Ai,A+i .

As a preliminary result we show (section 3) that, besidesAq±,SL(N),φd †, A
q

+,SO(N),φd [2–
5], Aq−,Sp(n),φd can also be defined. The first major result is, however, that one can embed
M identical copies ofAq+,G,φd (resp.Aq−,G,φd ) into a unique, well-defined algebraAq+,G,φM
(resp.Aq−,G,φM ), or more generallyM ′ < M copies ofAq+,G,φd and (M − M ′) copies of
Aq−,G,φd into a unique, well-defined deformed superalgebraAqG,φM ; φM denotes here the
direct sum ofM copies ofφd . Due to the rules of braiding [6], the different copies do not
commute with each other; consistent commutation relations between the latter require the
introduction of an ordering: we call the ordered sequence a ‘braided chain’.

The use of the symbolsai, a+i , A
i, A+i etc does not necessarily mean that we are dealing

with creators and annihilators; the latter fact is rather determined by the choice of the∗-
structure, if any. In section 4 we consider the natural∗-structures giving the generators
the meaning of creation and annihilation operators, or for example of coordinates and
derivatives.

The second major result (section 5) is that ifGq = SLq(N) one can modify theA–A+

commutation relations ofAq±,SL(N),φM in such a way that the generators become explicitly
GLq(M)×SLq(N)-covariant‡. The additional symmetryGLq(M) transforms the different
copies into each other, as in the classical case.

The physical relevance of the case thatφ is a direct sum of many copies ofφd ’s is
easily understood once one notes that the different copies could correspond to different
particles, crystal sites or space(time)-points, respectively in quantum mechanics, condensed
matter physics or quantum field theory. The coupling (i.e. noncommutativity) between the
different copies can be interpreted as a naturally built-in form of interaction between them.
In the particular case thatAq±,G,φ (with q ∈ R) is a q-deformation of the∗-algebraA±,G,φ
with (ai)† = a+i , then the physical interpretation ofAi,A+j as annihilators and creators
does not necessarily requires the introduction of particles withexotic statistics. Indeed,
it is possible to adopt ordinary boson/fermion statistics [8, 9], wherebyA+i , A

i are to be
interpreted as ‘composite operators’ creating and destroying some sort of ‘dressed states’
of bosons/fermions.

2. Preliminaries

For a simple Lie groupG the algebra Fun(Gq) [10] is generated byN2 objects T ij ,
i, j = 1, . . . , N , fulfilling the commutation relations

R̂
ij

hkT
h
l T

k
m = T ihT jk R̂hklm. (2.1)

N is the dimension of the defining representation ofG, R̂ the corresponding ‘braid matrix’
[10], i.e. a numerical matrix fulfilling the ‘braid equation’

R̂12R̂23R̂12 = R̂23R̂12R̂23. (2.2)

Here we have used the conventional tensor notation(M12)
ijk

lmn = M
ij

lmδ
k
n, etc. Because of

equations (2.2) and (2.1) Fun(Gq) is also a bialgebra with coproduct and counit respectively
given by1(T ij ) = T ih ⊗ T hj andε(T ij ) = δij .
† SL(N) can be easily promoted also to aGL(N).
‡ The result regardingAq+, SL(N), φM was essentially already found in [7], whose author we thank for drawing
our attention to this point.
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A (right) comodule algebra of Fun(Gq) is an algebraM equipped with a
‘corepresentation’φ, i.e. with an algebra homomorphismφ : M → M ⊗ Fun(Gq) such
that (id ⊗ 1) ◦ φ = (φ ⊗ id) ◦ φ. For any polynomial functionf (t) in one variable, the
algebraM generated byN objectsA+i fulfilling the quadratic relations

[f (R̂)]ijhkA
+
i A
+
j = 0 (2.3)

and equipped with the algebra homomorphismφd(A
+
i ) := A+j ⊗ T ji is a comodule algebra

[10].
By adding to the quadratic conditions (2.1) some suitable inhomogeneous condition [10],

Fun(Gq) can be endowed also with an antipodeS and therefore becomes a Hopf algebra†.
Then the algebraM′ generated byN objectsAi fulfilling the quadratic relations

[f (R̂)]hkij A
jAi = 0 (2.4)

and equipped with the algebra homomorphismφ∨d (A
i) := Aj ⊗ ST ij is a comodule algebra

with inverse transformation properties ofM; therefore the corepresentationφ∨d can be called
the contragradient ofφd .

To continue, we need to recall some specific information regarding each quantum group
Gq . The braid matrixR̂ of the quantum group Fun(Gq) is aN2 × N2 matrix that admits
the following projector decomposition [10]

R̂ = qPS − q−1PA if G = SL(N)
R̂ = qP s − q−1Pa + q1−NP t if G = SO(N)
R̂ = qP s ′ − q−1Pa′ − q1−NP t ′ if G = Sp(n), N = 2n

(2.5)

with

PµPν = δµν
∑
µ

Pµ = 1. (2.6)

PA,PS are SLq(N)-covariant q-deformations of the antisymmetric and symmetric
projectors respectively; they have dimensionsN(N−1)

2 and N(N+1)
2 respectively.Pa,P t ,P s

are SOq(N)-covariantq-deformations of the antisymmetric, trace, and symmetric trace-
free projectors respectively; they have dimensionsN(N−1)

2 , 1 and N(N+1)
2 − 1 respectively.

P s ′ ,P t ′ ,Pa′ areSpq(n)-covariant (N = 2n) q-deformations respectively of the symmetric,
symplectic, antisymmetric symplectic-free projectors; they have dimensionsN(N+1)

2 ,1 and
N(N−1)

2 − 1 respectively. Setting

P+ = PS if G = SL(N)
P+ = P s + P t if G = SO(N)
P+ = P s ′ if G = Sp(n)
P− = PA if G = SL(N)
P− = Pa if G = SO(N)
P− = Pa′ + P t ′ if G = Sp(n)

(2.7)

we obtain Fun(Gq)-covariant deformationsP+,P− of the N
2 (N + 1)-dim symmetric and

N
2 (N − 1)-dim antisymmetric projector respectively.

† In the caseGq = SLq(N) this condition reads detq T = 1, where detq T is theq-deformed determinant ofT .
One can also define a Hopf algebraGLq(N) by using the samêR-matrix, introducing a new generatort that is
central and group-like, together with its inverset−1, and then imposing the weaker condition detq T = t .
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In the following we shall also need the explicit expression for theR̂ matrix of SLq(N)
and for its inverse:

R̂ = q
N∑
i=1

eii ⊗ eii +
∑
i 6=j

e
j

i ⊗ eij + (q − q−1)
∑
i<j

eii ⊗ ejj . (2.8)

R̂−1 = q−1
N∑
i=1

eii ⊗ eii +
∑
i 6=j

e
j

i ⊗ eij + (q−1− q)
∑
i>j

eii ⊗ ejj . (2.9)

Here we have used the conventional tensor notation and denoted byeij theN × N matrix
with (eij )

h
k = δihδjk.

By repeated application of the equations (2.2), (2.1) we find

f (R̂)
ij

hkT
h
l T

k
m = T ihT jk f (R̂)hklm

f (R̂12)R̂23R̂12 = R̂23R̂12f (R̂23)
(2.10)

for any polynomial functionf (t) in one variable, in particular for thosef ’s yielding
f (R̂) = Pµ or f (R̂) = R̂−1. Equations (2.2), (2.1) and (2.10) are evidently satisfied
also after the replacement of̂R→ R̂−1.

If in relations (2.3) and (2.4) one choosesf (R̂) = P∓, these equations become the
Fun(Gq)-covariant deformations of the (anti)commutation relations (1.1) and (1.2):

P∓ ij

hkA
+
i A
+
j = 0 (2.11)

P∓ ij

hkA
kAh = 0. (2.12)

Relations (1.1), (1.2), (2.11) and (2.12) amount each toN(N−1)
2 or to N(N+1)

2 independent
relations, respectively if the upper or the lower sign is considered. The algebrasM, M′
defined resp. by (2.11) and (2.12) have [10, 11] the same Poincaré series as the algebras
defined by resp. by (1.1) and (1.2).

To obtain Fun(Gq)-covariant deformationsAq±,G,φd of the classical Heisenberg algebras
described in section 1 one still has to deform relations (1.3). ForGq = SLq(N), SOq(N)
this was done in [2–5]. The natural ansatz is to look for quadratic cross commutation
relations, in the form

AiA+j = δij1± SihjkA+h Ak. (2.13)

The inhomogeneous term is fixed by the requirement that{Ai} is the basis dual to{A+i }. The
numerical matrixS has to be determined imposing Fun(Gq)-covariance and thatAq±,G,φd
itself has the same Poincaré series as its classical counterpartA±,G,φd . It will be convenient
to use the following general lemma.

Lemma 1.Let R̂ = ∑
µ cµPµ be the projector decomposition of the braid matrixR̂, and

let P+ :=∑µ: cµ>0Pµ andP− :=∑µ: cµ<0Pµ be the corresponding deformed symmetric
and antisymmetric projectors respectively. Assume that relations (2.11) and (2.12) define
algebrasM,M′ with the same Poincaré series as their classical counterparts. In order that
relations (2.11)–(2.13) define a deformed Weyl algebraAq+ (resp. Clifford algebraAq−) with
the same Poincaré series as its classical counterpartA+ (resp.A−) there must exist exactly
one negative (resp. positive)cµ, say c− (resp.c+), and the commutation relations (2.13)
have to take one of the two following forms

AiA+j = δij1± (c∓)−1R̂ihjkA
+
h A

k (2.14)

AiA+j = δij1± c∓R̂−1ih
jkA
+
h A

k. (2.15)
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Proof. Let us multiply equation (2.11) byAl from the left. We easily find

0= AlP∓ ij

hkA
+
i A
+
j

(2.13)= [P±(1+ S)]lihkA+i + (S12S23P±12)
lij

hkmA
+
i A
+
j A

m.

To ensure that the second term vanishes without introducing new, third degree relations
(which would yield a different Poincaré series) it must be eitherS ∝ R̂ or S ∝ R̂−1, so that

(S12S23P±12)
lij

hkmA
+
i A
+
j A

m (2.10)= (P±23S12S23)
lij

hkmA
+
i A
+
j A

m (2.11)= 0.

These correspond to the two possible braidings [6]. IfS = bR̂, then the first term vanishes
iff

0= P±(1+ S) =
∑

µ:±cµ>0

Pµ(1+ cµb)⇔ 1+ cµb ∀µ : ±cµ > 0.

Thus there must exist exactly one positive (resp. negative)cµ and relation (2.14) must hold.
Similarly one proves relation (2.15) ifS = bR̂−1. �

As immediate consequences of this lemma and of the decompositions (2.7) we find the
following.
• There exists no satisfactory definitions of theq-deformed algebrasAq−,SO(N),φd ,

Aq+,sp(n),φd , since these correspond respectively to the projectors(2.7)2, (2.7)6.
• There exists satisfactory definitions of theq-deformed algebrasAq+,SL(N),φd [2, 3],

Aq−,SL(N),φd [4], Aq+,SO(N),φd [5], Aq−,sp(n),φd , since these are the algebras corresponding
respectively to the projector(2.7)4 (2.7)1 , (2.7)5 , (2.7)3 (to our knowledge, the latter has
never been considered before in the literature).

3. Main embedding prescription

We would like to generalize the construction of the preceding section to the case in which
A+i , Ai belong respectively to corepresentationsφM, φ∨M that are direct sums ofM > 1
copies ofφd, φ∨d . Let αAq±,G,φd (α = 1, 2, . . . ,M) beGq-covariantq-deformed Heisenberg
algebra with generators1, Aα,i , A+α,i , i = 1, . . . , N , and relations

P (α)hkij A+α,hA+α,k = 0 (3.1)

P (α)ijhkAα,kAα,h = 0 (3.2)

Aα,iA+α,j − δij1− (−1)εα [(q1−2εα R̂)ηα ]ihjkA
+
α,hA

α,k = 0. (3.3)

According to the last remark in the previous section, letεα take the valuesεα ≡ 0 if
G = SO(N), εα ≡ 1 if G = Sp(n), andεα = 0, 1 if G = SL(N); εα = 0, 1 correspond to
Weyl and Clifford respectively. Moreover, let

P (α) =
{
P+ if εα = 0

P− if εα = 1.
(3.4)

Recalling that the comodules of Fun(Gq) belong to a braided monoidal category, we
know that consistent commutation relations between the generators ofαAq±,G,φd ,

βAq±,G,φd ,
α 6= β, are given by the two possible braidings (the latter correspond to the quasitriangular
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structuresR,R−1
21 [6]). Accordingly, the commutation relations betweenA+α,i , A

+
β,j for

instance may become

either A+α,i , A
+
β,j ∝ R̂hkij A+β,hA+α,k

or A+α,i , A
+
β,j ∝ R̂−1hk

ij A
+
β,hA

+
α,k.

There areM(M−1)
2 different pairs(α, β); if we could choose for each pair the upper or

lower solution independently we would have 2
M(M−1)

2 different versions of the deformed
commutation relations. We claim that, in fact, onlyM! are allowed, in other words that, up
to a reordering (i.e. a permutation of theα’s), the only consistent way is as follows.

Proposition 1.Without loss of generality we can assume that

A+α,i , A
+
β,j = (−1)εαεβ cαβR̂

hk
ij A

+
β,hA

+
α,k if α < β (3.5)

with cαβ
q→1→ 1.

(We have factorized the overall sign necessary to obtain the correct commutation relations
between fermionic or bosonic variables in the classical limit).

Proof. The claim can be proved inductively. It is obvious ifM = 2. Assume now that
the claim is true whenM = P , and callA+·,i the generators of the(P + 1)th additional
subalgebra. We need to prove that

A+β,iA
+
·,j ∝ R̂hkij A+·,hA+β,k ⇒ A+α,iA

+
·,j ∝ R̂hkij A+·,hA+α,k ∀α < β

A+γ,iA
+
·,j ∝ R̂−1hk

ij A
+
·,hA

+
γ,k ⇒ A+δ,iA

+
·,j ∝ R̂−1hk

ij A
+
·,hA

+
δ,k ∀δ > γ.

Let A+β,iA
+
·,j = V hkij A

+
·,hA

+
β,k; we can invert the order of the factors in the product

A+α,hA
+
β,iA

+
·,j either by permuting the first two factors, then the last two, finally the first

two again, or by permuting the last two factors, then the first two, finally the last two again;
to get the same result we need thatR̂12V23R̂12 = R̂23V12R̂23. This equation is satisfied iff
V ∝ R̂. Thus we have proved the first implication. Similarly one proves the second.�

Equation (3.5) and the condition thatAα,i are the dual generators ofA+α,i implies (for
α < β)

Aα,jAβ,i = (−1)εαεβ cαβR̂
ij

hkA
β,kAα,h. (3.6)

As for the remaining relations, we shall look for them in the formAβ,iA+α,j = Mih
jkA

+
α,hA

β,k.
It is easy to check that from either of the previous relation and the commutation relations
of αAq±,G,φd it follows (for α < β):

Aβ,iA+α,j = (−1)εαεβ cαβR̂
ih
jkA

+
α,hA

β,k (3.7)

Aα,iA+β,j = (−1)εαεβ c−1
αβ (R̂

−1)ihjkA
+
β,hA

α,k. (3.8)

For instance, relation (3.7) is derived by consistency when requiring that one gets the same
result fromAα,iA+α,jA

+
β,k either by permuting the first two factors, then the last two, finally

the first two again, or by permuting the last two factors, then the first two and finally the
last two again.

We will call AqG,φM the unital algebra generated by1, Aα,i , A+α,i , α = 1, 2, . . . ,M,
i = 1, . . . , N and commutation relations (3.1)–(3.3), (3.5), (3.7) and (3.8). We have thus
proved the following proposition.

Proposition 2.AqG,φM has the same Poincaré series as its classical counterpartAG,φM .
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4. ∗-structures

Let Fun(Gq) be a Hopf∗-algebra and assume thatαAq±,G,φd are Fun(Gq)-comodule∗-
algebras:

φd(b
?α ) = [φd(b)]

?α⊗∗ b ∈ αAq±,g,φd (4.1)

(here ‘?α ’ denotes the∗ of αAq±,G,φd ). Can we use the?α ’s to build a∗-structure? of the
wholeAq±,G,φ?

In the case that∗ realizes the compact real section of Fun(Gq) (what requiresq ∈ R+),
then the simplest∗-structure inAq±,g,φd is

(Ai)? = A+i . (4.2)

It is immediate to check that the ansatz(Ai,α)? = A+i,α would be compatible with
relations (3.1)–(3.3), but inconsistent with relations (3.5)–(3.8). Therefore let us choose the
ansatz

(Ai,α)? = A+i,π(α) (4.3)

whereπ is some permutation of(1, . . . ,M). It is easy to check that consistency with
relations (3.5)–(3.8) requires

π(α) = M − α + 1 (4.4)

ηπ(α) = ηα cπ(α)π(β) = cβα επ(α) = εα. (4.5)

Equation (4.4) shows thatπ must be the inverse-ordering permutation; equation (4.5)3

amounts to say that? must preserve the bosonic or fermionic character of the generators.
Aq+,SO(N),φd admits also an alternative∗-structure compatible withφd , namely

(A+i )
? = A+j Cji (4.6)

together with a nonlinear transformation for(Ai)? [12]. HereCij is theq-deformed metric
matrix [10], which is related to the projectorP t appearing in (2.5)2 through the formula
P t ijhk = CijChk

ClmClm
. It is easy to check that the ansatz

(A+i,α)
? = A+j,π(α)Cji (4.7)

together with the corresponding nonlinear one for(Ai,α)?, defines a consistent∗-structure
of Aq+,SO(N),φd provided relations (4.4) and (4.5) hold (withεα ≡ 0 ∀α).

5. Modified prescription: GLq(M )×Gq-covariant algebras

If all the generators ofA±,G,φ have the same Grassman parity, they belong to a
corepresentation ofGL(M) × G. The coaction of the groupGL(M) amounts to a linear
invertible transformationT of the aα,i and of thea+α,i :

aα,i → aβ,iT αβ a+α,i → a+β,iT
−1β
α (5.1)

which leaves the commutation relations (1.1)–(1.3) invariant. (If in addition we require some
∗-structure to be preserved, thenT has to belong to some suitable subgroup ofGL(M) for
exampleT ∈ U(M) if (ai)† = a+i .) We now try to construct a variant of the algebra of
section 3 having explicitlyGLq(M)×Gq-covariant generators†.

† Or equivalentlySLq(M)×Gq -covariance, if we also impose the unit condition on theq-determinant ofGLq(M).
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Let T αβ , t = detq ‖T αβ ‖ be the generators of the quasitriangular Hopf algebra
Fun[GLq(M)], andT ab the generators of Fun(Gq) [10]. Let us introduce collective indices
A,B, . . . , denoting the pairs(α, a), (β, b), . . . . The Hopf algebra Fun(GLq(M)×Gq) can
be defined as the algebra generated by objectsT AB satisfying commutation relations which
can be obtained from (2.1) by the replacement

T AB → T αβ T
a
b (5.2)

by assuming that [T αβ , T
a
b ] = 0:

R̂AB
CDT

C
E T

D
F = T AC T BD R̂CD

EF . (5.3)

Here R̂ is one of the matrices

R̂±ABCD := R̂±1
M

αβ

γ δ R̂
ab
cd ≡ (R̂±1

M ⊗ R̂)ABCD (5.4)

andR̂M is the braid matrix (2.8) ofSLq(M). R̂± satisfies the braid equation, sinceR̂, R̂M do.
The coproduct, counit, antipode and quasitriangular structure are introduced as in section 2
by 1(T AB ) = T AC ⊗ T CB , ε(T AB ) = δAB , ST AB = T −1A

B .
A (right) comodule algebra of Fun(GLq(M) × Gq) can be associated to the defining

corepresentation of the latter,φD(A
+
A) = A+B ⊗ T BA , whereA+C denote the generators.

The dual comodule algebra, with generatorsAC , will be associated to the contragradient
corepresentationφ∨D(A

A) = AB⊗ST AB . To find compatible quadratic commutation relations
among theA+B ’s (resp.AB ’s) we need the projector decomposition ofR̂±, as in section 2.
For this scope we just need to write down the projector decompositions of bothR̂±1

M andR̂
and note thatP := PM ⊗ P ′ is a projectorP wheneverP,P ′ are.

We start with the caseGq = SLq(N). We find

R̂+ = (qPSM − q−1PAM)⊗ (qPS − q−1PA)
= −(PSM ⊗ PA + PAM ⊗ PS)+ q2PS ⊗ PS + q−2PAM ⊗ PAM
=: −P− + q2PS,1+ q−2PS,2 (5.5)

and

R̂− = (q−1PSM − qPAM)⊗ (qPS − q−1PA)
= (PAM ⊗ PA + PSM ⊗ PS)− q2PAM ⊗ PS − q−2PSM ⊗ PA
=: P+ − q2PA,1− q−2PA,2. (5.6)

We are in the condition to apply lemma 1. As a consequence, there exists a
GLq(M)× SLq(N)-covariant Weyl algebraAq+,GLq(M)×SLq(N),φD , defined by the following
commutation relations:

P−CDABA
+
CA
+
D = 0 (5.7)

P−ABCDA
DAC = 0 (5.8)

AAA+B − δAB1− R̂+ACBDA
+
CA

D = 0. (5.9)

Moreover, there exists aq-deformed SLq(M) × SLq(N)-covariant Clifford algebra
Aq−,SLq(M)×SLq(N),φD , defined by the following commutation relations:

P+CDABA
+
CA
+
D = 0 (5.10)

P+ABCDA
DAC = 0 (5.11)

AAA+B − δAB1+ R̂−ACBDA
+
CA

D = 0. (5.12)
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According to lemma 1, one could give also alternative definitions withR̂−1 instead ofR̂ in
relations (5.9) and (5.12).

Let us verify that relations (5.7), (5.8), (5.10) and (5.11) are of the kind considered in
section 3.

We take first relations (5.7) into account. We find

(q + q−1)2P− (5.5)= (q + q−1)2[PS ⊗ PA + PA +⊗PS ]
(2.7)4= (q1− R̂M)⊗ (q−11+ R̂)+ (q−11+ R̂M)⊗ (q1− R̂)
= 2(1⊗ 1− R̂M ⊗ R̂)+ (q − q−1)(1⊗ R̂ + R̂M ⊗ 1).

Using relation (2.8) we can writêRM explicitly and check that relations (5.7) amount to
relations

P−hkij A+α,hA+α,k = 0 (5.13)

A+α,i , A
+
β,j − R̂hkij A+β,hA+α,k = 0 if α < β. (5.14)

Similarly one verifies that: (1) relations (5.8) amount to relations

P−ijhkAα,kAα,h = 0 (5.15)

Aα,jAβ,i − R̂ijhkAβ,kAα,h = 0 if α < β; (5.16)

(2) that relations (5.10) amount to relations†
P+hkij A+α,hA+α,k = 0 (5.17)

A+α,i , A
+
β,j + R̂−1hk

ij A
+
β,hA

+
α,k = 0 if α < β; (5.18)

(3) that relations (5.11) amount to relations

P+ijhkAα,kAα,h = 0 (5.19)

Aα,jAβ,i + R̂−1ij
hkA

β,kAα,h = 0 if α < β. (5.20)

On the other hand, relations (5.9) and (5.12) forα 6= β arenot of the type (3.7), (3.8)
found in section 3; in fact, in a similar way one can show that relation (5.9) takes the form

Aα,aA+β,b − R̂acbdA+β,cAα,d = 0 α 6= β (5.21)

Aα,aA+α,b − δab1− qR̂acbdA+α,cAα,d − (q − q−1)
∑
β>α

R̂acbdA
+
β,cA

β,d = 0 (5.22)

whereas relation (5.12) amounts to

Aα,aA+β,b + R̂acbdA+β,cAα,d = 0 α 6= β (5.23)

Aα,aA+α,b − δab1+ q−1R̂acbdA
+
α,cA

α,d − (q − q−1)
∑
β<α

R̂acbdA
+
β,cA

β,d = 0. (5.24)

Relations (5.21) and (5.23) specialized to the caseα > β coincide with relations (3.7);
specialized to the caseα < β, they differ from relations (3.8). Relations (5.22) and (5.24)
differ from relations (3.3) by the additional terms with coefficient(q − q−1).

The subalgebraM (resp.M′) generated byA+A ’s (resp.AA’s) has the same Poincaré
series of the subalgebra generated by classicala+αa ’s (resp.aαa ’s), because of relations (5.13)
and (5.14) (resp. (5.15) and (5.16)) in the Weyl case and because of relations (5.17) and
(5.18) (resp. (5.19) and (5.20)) in the Clifford case. Since relations (5.9) and (5.12) allow
to change the order ofA+A ’s and AB ’s in any product, we conclude with the following
proposition.

† These are also of the type considered in section 3, provided we invert the order of Greek indices.
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Proposition 3.The algebrasAq±,GLq(M)×SLq(N),φD have the same Poincaré series as their
classical counterparts.

Finally, let us ask about∗-structures. Whenq ∈ R+ the Hopf algebraGLq(M) ×
SLq(N) admits the compact sectionUq(M) × SUq(N) [10]. The deformed Heisenberg
algebras defined by relations (5.7)–(5.12) admit a naturalUq(M) × SUq(N)-covariant∗-
structure given by

(AA)? = A+A (5.25)

this can be easily checked by applying this? to relations (5.7)–(5.12) and by noting that
R̂T = R̂ and thereforêRT = R̂, PT = P.

Let us now take into consideration the cases thatGq = SOq(N), Spq(n). The projector
decomposition ofR̂M ⊗ R̂ =

∑
µ λµPµ gives λµ = q2, q−2,−1,±q2−N,∓q−N , where

the upper and lower sign refer toGq = SOq(N) and Spq(n) respectively. The projector
decomposition ofR̂−1

M ⊗ R̂ =
∑

µ λµPµ gives λµ = −q2,−q−2, 1,∓q2−N , ±q−N . In
both cases we always have more than one positive and more than one negativeλµ. By
lemma 1 noGLq(M)×Gq covariantq-deformed Weyl/Clifford algebra can be built by this
procedure.
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