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Abstract. Given M copies of ag-deformed Weyl or Clifford algebra in the defining
representation of a quantum groudp,, we determine a prescription to embed them into a
unique, inclusiveG,-covariant algebra. The different copies are ‘coupled’ to each other and
are naturally ordered into a ‘chain’. In the caSg = SL,(N) a modified prescription yields

an inclusive algebra which is even explicittyL, (M) x SL,(N)-covariant, whereSL, (M) is

a symmetry relating the different copies. By the introduction of these inclusive algebras we
significantly enlarge the class @f,-covariant deformed Weyl/Clifford algebras available for
physical applications.

1. Introduction

Weyl and Clifford algebras (respectively denoted Ay, .4_ and collectively as ‘Heisenberg
algebras’) are at the heart of quantum physics. The most useful Heisenberg algebras are
those endowed with definite transformation properties under the action of some symmmetry
Lie group G (or Lie algebrag).

The idea that quantum groups [1] could generalize Lie groups in describing symmetries
of quantum physical systems has attracted much interest in the past decade. Mathematically
speaking, a quantum group can be described as a deformatiaiHunf the algebra
Fun(G) of regular functions onG or, in the dual picture, as a deformatidr,g of the
universal enveloping algebré g, within the category of (quasitriangular) Hopf algebras;
hereq = €', andh is the deformation parameter. Thegaleformations induce matched
g-deformations of all Fu(G,)-comodule algebras (i.e. of the algebras whose generators
satisfy commutation relations that are preserved by the(&yncoaction), in particular
of G-covariant Heisenberg algebras;-deformed Heisenberg algebras corresponding to
a simple Lie algebrg in the classical seried,, B,, D, were introduced in [2-5] in the
restricted case that the generatafs A’ belong respectively to the defining corepresentation
¢4 of FUn(G,) and to its contragradient; .

In general, we shall denote by, ; , the Weyl/Clifford algebra with generators, a;"
belonging respectively to some corepresentatioaf G and to its contragradient” and
fulfilling the canonical (anti)commutation relations

aj'a;” F a;“ai+ =0 (1.1
aa’ Falad =0 (1.2)
aiaj+ — 51’:1 F afai =0. (1.3)
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The purpose of this work is to find out whether there exists sGpeovariant deformation
of Ay 6.4 (Which we will denote byAiG,d)) having the same Poindaiseries asd, 4.
We shall denote the generators 4f ; , by A’, A].

As a preliminary result we show (section 3) that, besi.zlésswvmf, Ai’SO(N),(,Jd [2—

5], AZ,Sp(n),(bd can also be defined. The first major result is, however, that one can embed
M identical copies ofd? ; , (resp.A? ;) into a unique, well-defined algebrd’,  ,
(resp.A? ;,4,,), or more generallyy’ < M copies of A% . , and (M — M') copies of
AZ,G,% into a unique, well-defined deformed superalgeb\‘gw; ¢u denotes here the
direct sum ofM copies ofg,. Due to the rules of braiding [6], the different copies do not
commute with each other; consistent commutation relations between the latter require the
introduction of an ordering: we call the ordered sequence a ‘braided chain’.

The use of the symbolg, a;", A’, A etc does not necessarily mean that we are dealing
with creators and annihilators; the latter fact is rather determined by the choice &f the
structure, if any. In section 4 we consider the naturatructures giving the generators
the meaning of creation and annihilation operators, or for example of coordinates and
derivatives.

The second major result (section 5) is thaGif = SL,(N) one can modify thed—A™
commutation relations QﬂiSL(NWM in such a way that the generators become explicitly
GL,(M) x SL,(N)-covarianf. The additional symmetr& L, (M) transforms the different
copies into each other, as in the classical case.

The physical relevance of the case tigats a direct sum of many copies @f;'s is
easily understood once one notes that the different copies could correspond to different
particles, crystal sites or space(time)-points, respectively in quantum mechanics, condensed
matter physics or quantum field theory. The coupling (i.e. noncommutativity) between the
different copies can be interpreted as a naturally built-in form of interaction between them.
In the particular case tha&iGy¢ (with ¢ € R) is ag-deformation of thex-algebraA. g 4
with (a)! = 4", then the physical interpretation of', A7 as annihilators and creators
does not necessarily requires the introduction of particles exbtic statistics. Indeed,
it is possible to adopt ordinary boson/fermion statistics [8, 9], whergbyA’ are to be
interpreted as ‘composite operators’ creating and destroying some sort of ‘dressed states’
of bosons/fermions.

2. Preliminaries

For a simple Lie groupG the algebra FWG,) [10] is generated byN? objects Tj",
i,j=1,...,N, fulfilling the commutation relations

R T/ Ty = TiT{ Rjy. (2.1)
N is the dimension of the defining representatiorGofR the corresponding ‘braid matrix’
[10], i.e. a numerical matrix fulfilling the ‘braid equation’

ﬁ12§23ﬁ12 = §23§12ﬁ23- (2-2)

Here we have used the conventional tensor notatii,)’" = M’ 5%, etc. Because of
equations (2.2) and (2.1) Fut,) is also a bialgebra with coproduct and counit respectively

given by A(T)) = T, @ T/ ande(T}) = 8.

1 SL(N) can be easily promoted also toGEL(N).
i The result regardingﬁl‘i, SL(N), ¢ was essentially already found in [7], whose author we thank for drawing
our attention to this point.
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A (right) comodule algebra of Fu,) is an algebra M equipped with a
‘corepresentationy, i.e. with an algebra homomorphisg: M — M ® FunG,) such
that (id ® A) o ¢ = (¢ ® id) o ¢. For any polynomial functionf(¢) in one variable, the
algebraM generated by objectsA;" fulfilling the quadratic relations

[f(RIHATA; =0 (2.3)

and equipped with the algebra homomorphigpiA;h) := AJ.+ ® Tij is a comodule algebra
[10].

By adding to the quadratic conditions (2.1) some suitable inhomogeneous condition [10],
Fun(G,) can be endowed also with an antipafiend therefore becomes a Hopf algebra
Then the algebrav’ generated by objectsA’ fulfilling the quadratic relations

[f(R)]AIAT =0 (2.4)

and equipped with the algebra homomorphigjftA’) := A/ ® ST} is a comodule algebra
with inverse transformation properties 8f; therefore the corepresentatigji can be called
the contragradient ap,.
To continue, we need to recall some specific information regarding each quantum group
G4. The braid matrixk of the quantum group FuUg,) is a N2 x N? matrix that admits
the following projector decomposition [10]

R=qPS—qgp* if G =SL(N)
R=gqP —q Pt + g+ Np if G=SO(N) (2.5)
R=qP" — g ipe —gt-Np" it G=Sp(n), N=2n
with
PHPY = s Y oPr=1 (2.6)
"

P4, PS are SL,(N)-covariant g-deformations of the antisymmetric and symmetric
projectors respectively; they have dimensidﬁ@ and %*1) respectively. P4, P!, P*

are SO, (N)-covariantg-deformations of the antisymmetric, trace, and symmetric trace-
free projectors respectively; they have dimensié§—, 1 and X2 — 1 respectively.
PP, P are Spy(n)-covariant (V = 2n) g-deformations respectively of the symmetric,
symplectic, antisymmetric symplectic-free projectors; they have dimenﬁ%&l—),l and

%_l) — 1 respectively. Setting
Pt ="p° if G=SL(N)
Pt=P +P if G=SO(N)
Pt =P if G=Spn) on
P~ =p4 if G =SL(N) .
P =P if G=SO(N)
P =P +P"  if G=Spn)

we obtain FunG,)-covariant deformation®*, P~ of the %(N + 1)-dim symmetric and
%(N — 1)-dim antisymmetric projector respectively.

1 Inthe caseG, = SL,(N) this condition reads dg” = 1, where detT is the g-deformed determinant df .
One can also define a Hopf algelGd., (N) by using the same-matrix, introducing a new generatorthat is
central and group-like, together with its inversé', and then imposing the weaker condition dEt= t.
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In the following we shall also need the explicit expression for Ehenatrix of SLy(N)
and for its inverse:

N
- Zf@e +Y e @e+@—qgH) el (2.8)
i#] i<j
R _q_lZe Qe +y e/ ®ei+(@ T —q) ) e ®e. (2.9)
i#] i>]

Here we have used the conventional tensor notation and denotejdthyN x N matrix
with (ejl)llz = 8”’8_,~k.
By repeated application of the equations (2.2), (2.1) we find

FRLT T, =TT f (R,

f(R12)RasRi2 = RosRiaf (R22)
for any polynomial functionf(z) in one variable, in particular for thosg¢’s yielding
f(R) = P* or f(R) = R Equations (2.2), (2.1) and (2.10) are evidently satisfied
also after the replacement & — RL

If in relations (2.3) and (2.4) one choos¢gR) = PT, these equations become the
Fun(G,)-covariant deformations of the (antijcommutation relations (1.1) and (1.2):

PTiATAT =0 2.11)
PTiARA" = 0. (2.12)
Relations (1.1), (1.2), (2.11) and (2.12) amount each'® or to X2 independent
relations, respectively if the upper or the lower sign is considered. The algahrast’
defined resp. by (2.11) and (2.12) have [10, 11] the same Péirsmaies as the algebras
defined by resp. by (1.1) and (1.2).
To obtain FurG,)-covariant deformationst?. % G.¢, Of the classical Heisenberg algebras
described in section 1 one still has to deform relations (1.3). Fpe= SL,(N), SO, (N)

this was done in [2-5]. The natural ansatz is to look for quadratic cross commutation
relations, in the form

ATAT =814 SAT AN (2.13)

(2.10)

The inhomogeneous term is fixed by the requirement{thatis the basis dual toA;"}. The
numerical matrix$ has to be determined imposing Ruh)-covariance and thati  ,
itself has the same Poinéaseries as its classical counterpdrt  4,. It will be convenient
to use the following general lemma.

Lemma lLlet R = >, cu’P" be the projector decomposition of the braid matkix and

let Pt =3 . -0 P andP” =3 . . _oP" be the corresponding deformed symmetric
and antisymmetric projectors respectively. Assume that relations (2.11) and (2.12) define
algebrasM, M’ with the same Poincarseries as their classical counterparts. In order that
relations (2.11)—(2.13) define a deformed Weyl! algeltta(resp. Clifford algebrad? ) with

the same Poincérseries as its classical counterpdrt (resp..A_) there must exist exactly

one negative (resp. positive),, sayc_ (resp.c;), and the commutation relations (2.13)
have to take one of the two following forms

ATAT =814 (c3) 'R A AF (2.14)
ATAT =811 e R7YIAT AR, (2.15)
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Proof. Let us multiply equation (2.11) by’ from the left. We easily find
0=A"PT AT AT
CL [P+ AT + (S12525PEL, AT AT A™.

To ensure that the second term vanishes without introducing new, third degree relations
(which would yield a different Poincarseries) it must be eitheroc R or S o« R72, so that

Am 210

1 1 m (2 11
(S12823P )t AT AT (P5S12520)) ], A AT A" =D 0,

These correspond to the two possible braidings [6]5 # bR, then the first term vanishes
iff
0=P*L+8 = > P'd+cub) s 1+cub Vi £c, > 0.
jite, >0
Thus there must exist exactly one positive (resp. negatiyend relation (2.14) must hold.
Similarly one proves relation (2.15) § = bR™1. ]

As immediate consequences of this lemma and of the decompositions (2.7) we find the
following.

e There exists no satisfactory definitions of thedeformed algebraSélq_’SO(N)m,
A‘i Sp().ba? since these correspond respectively to the proje¢dil,, (2.7)g.

e There exists satisfactory definitions of tjedeformed algebrasﬁl‘fhm,\,)m [2, 3],
AL 5100 18l AL sownge Bl AL 4,0 SiNCE these are the algebras corresponding
respectlvely to the projectal.7)4 (2.7)1 , (2.7)s , (2.7)3 (to our knowledge, the latter has
never been considered before in the literature).

3. Main embedding prescription

We would like to generalize the construction of the preceding section to the case in which
A, A’ belong respectively to corepresentatiahs, ¢y, that are direct sums off > 1
copies ofg,, ¢ . Let“A‘i’G s (@ =1,2,..., M) be G,-covariantg-deformed Heisenberg

algebra with generatork A%, A;f,, =1,..., N, and relations
P(a)hkA+ JAT =0 (3.1)
PO Ak A% = 0 3.2)
AYAL = 81— (—D)%“[(g" > Rk AL, A% = 0. (3.3)

According to the last remark in the previous section, dettake the values, = O if
G=SO(N),¢,=11if G=Spn),ande, =0,1if G=SL(N); ¢, = 0,1 correspond to
Weyl and Clifford respectively. Moreover, let

pt if =0

P@ = . 3.4
P if ¢, =1. (3.4)
Recalling that the comodules of Fi,) belong to a braided monoidal category, we

know that consistent commutation relations between the generatctsidf; , , P AL ; ,
o # B, are given by the two possible braidings (the latter correspond to the quasitriangular
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structuresR, Rz‘ll [6]). Accordingly, the commutation relations betweari i A; ; for
instance may become

. 4 + phk A+ +
either Aa,i’ Aﬁ,j X Rij Aﬂ,hAot,k
or A

+ b—1hk s+ A+
wir Ap.j C R Ap nAaie

There are¥™=2 different pairs(a, #); if we could choose for each pair the upper or

lower solution independently we would havé 2" different versions of the deformed
commutation relations. We claim that, in fact, o} are allowed, in other words that, up
to a reordering (i.e. a permutation of thés), the only consistent way is as follows.

Proposition 1.Without loss of generality we can assume that
AT A;,j — (_l)easﬁcaﬂﬁlhjkAEhA;;k if o < B (3.5)

o,
. 1
With cos = 1.

(We have factorized the overall sign necessary to obtain the correct commutation relations
between fermionic or bosonic variables in the classical limit).

Proof. The claim can be proved inductively. It is obviousM = 2. Assume now that
the claim is true when = P, and caIIA?:. the generators of théP + 1)th additional
subalgebra. We need to prove that

phk phk
A;l.Afj o« R}, Ath;;k = A;iAfj o R} Af AT, Ya < B
+ 4+ p—Lhk A+ 2+ + A+ p—Llhk o+ A+
AT AT o RFAT AT = AT AT, o RTTAT AT, V8 > y.

Let A; AT, = V! AT, A%,; we can invert the order of the factors in the product
Aj,A; At either by permuting the first two factors, then the last two, finally the first
two again, or by permuting the last two factors, then the first two, finally the last two again;
to get the same result we need tibVaosR12 = Ro3VizRos. This equation is satisfied iff

V o R. Thus we have proved the first implication. Similarly one proves the secorid.

Equation (3.5) and the condition that are the dual generators ﬂf;’_i implies (for
a < B)
AYTAPT = (—1)%Pc R} APKA®T, (3.6)

As for the remaining relations, we shall look for them in the fotfif A}, = Ml AT, APK.
It is easy to check that from either of the previous relation and the commutation relations
of “Af ;,, it follows (for o« < B):

APTAY = (=D e RIAT, AP (3.7)

A AT = (D« f(RTYIAL A% (3.8)
For instance, relation (3.7) is derived by consistency when requiring that one gets the same
result fromA“v"A;jA;k either by permuting the first two factors, then the last two, finally
the first two again, or by permuting the last two factors, then the first two and finally the
last two again.

We will call A‘éw the unital algebra generated By A~/ AY,, o = 1,2,..., M,

i =1,..., N and commutation relations (3.1)—(3.3), (3.5), (3.7) and (3.8). We have thus
proved the following proposition.

Proposition 2.A; , ~has the same Poin@aseries as its classical counterpd, g, -
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4. x-structures

Let FunG,) be a Hopfx-algebra and assume thau? ; , are FurG,)-comodulex-
algebras:

u(b*) = [paBI*®*  be AL, (4.1)

(here %, denotes thex of a’A[:]t,G,%)‘ Can we use the,’s to build ax-structurex of the
whole A ; ,?

In the case that realizes the compact real section of FGg) (what requires; € R™),
then the simplest-structure inA%  , is

(A" = Af. (4.2)

It is immediate to check that the ansata’*)* = Ajfa would be compatible with
relations (3.1)—(3.3), but inconsistent with relations (3.5)—(3.8). Therefore let us choose the
ansatz

(A" = AT (4.3)
where r is some permutation ofl, ..., M). It is easy to check that consistency with
relations (3.5)—(3.8) requires

T@)=M—-—a+1 (4.4)

Nr(@) = N Cr()m(B) = Cha €n(e) = €a- (4.5)

Equation (4.4) shows that must be the inverse-ordering permutation; equation £4.5)
amounts to say that must preserve the bosonic or fermionic character of the generators.
A% sov)., @dmits also an alternativestructure compatible witip,, namely

(AN = AfCji (4.6)
together with a nonlinear transformation fot')* [12]. HereC;; is the g-deformed metric
matrix [10], which is related to the project@®’ appearing in (2.%)through the formula
P = % It is easy to check that the ansatz

(A;,ra)* — At cJi (4.7)

o7 ()

together with the corresponding nonlinear one faf*)*, defines a consistertstructure
of A% so().4, Provided relations (4.4) and (4.5) hold (with = 0 Va).

5. Modified prescription: GL,(M) x G4-covariant algebras

If all the generators ofAy g, have the same Grassman parity, they belong to a
corepresentation off L (M) x G. The coaction of the grou L (M) amounts to a linear
invertible transformatiorf” of the a®’ and of thea, ;:

a*t — aﬂ'iTg‘ al. — a/‘{iT’lﬁ (5.1)

which leaves the commutation relations (1.1)—(1.3) invariant. (If in addition we require some
*-structure to be preserved, thénhas to belong to some suitable subgroupsaf(M) for
exampleT € U(M) if (a')' = a;.) We now try to construct a variant of the algebra of
section 3 having explicithGL,(M) x G,-covariant generatofs

T Or equivalentlySL, (M) x G -covariance, if we also impose the unit condition onghgeterminant olG L, (M).
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Let 75, 1 = det, 1T be the generators of the quasitriangular Hopf algebra
Fun[GL,(M)], and T, the generators of Fy®,) [10]. Let us introduce collective indices
A, B, ..., denoting the pairéx, a), (8, b), .... The Hopf algebra FUi L, (M) x G,) can
be defined as the algebra generated by objEgtsatisfying commutation relations which
can be obtained from (2.1) by the replacement

T — TSTy (5.2)
by assuming that7[g, 7,/] = O:

RABTETY = TATHRED. (5.3)
HereR is one of the matrices

Rith = Ryl i R = (Ri ® R} (5.4)

andR,, is the braid matrix (2.8) of L,(M). R. satisfies the braid equation, sinée R, do.
The coproduct, counit, antipode and quasitriangular structure are introduced as in section 2
by A(T§) = TA @ TS, e(Tg) =85, ST} = T 14.

A (right) comodule algebra of FW&'L,(M) x G,) can be associated to the defining
corepresentation of the lattepip(A}) = A} ® TE, where AL denote the generators.
The dual comodule algebra, with generatadrs, will be associated to the contragradient
corepresentatiop ), (A1) = AB® STZ. To find compatible quadratic commutation relations
among theA}’s (resp.A®’s) we need the projector decompositionl%;, as in section 2.
For this scope we just need to write down the projector decompositions ofl?tjj,}tlandlé
and note thaP := Py, ® P’ is a projectorP wheneverP, P’ are.

We start with the cas&, = SL,(N). We find

A

R, = (q’])i/] _ q—l'P;\/I) ® (quS _ q_]'PA)
= —(Py ® P+ Py @ PS) +¢*P5 @ PS + ¢ 2Py, @ Py
=1 —P~ +¢%P"! +¢47%P%? (5.5)

and

R =(q Py —qPi) ® @P° —q7'PY

(P ® PA + P35, @ PS) — ¢*Piyy @ PS — ¢ 72P3, @ P4

= Pt — %P4t _ 42p42, (5.6)

We are in the condition to apply lemma 1. As a consequence, there exists a
GL,(M) x SL,(N)-covariant Weyl algebraﬁlfthLq(M)XSL(’(N),%, defined by the following
commutation relations:

P CoALAL =0 (5.7)
P 28APAC =0 (5.8)
AMAYL — 581 - R4S ALAD = 0. (5.9)

Moreover, there exists a-deformed SL, (M) x SL,(N)-covariant Clifford algebra
Aq—JLq(M)st[,(N),d)D! defined by the following commutation relations:

PTCRALAL =0 (5.10)
PTA8APAC =0 (5.11)
AMAT — P14+ R_4SAFAP = 0. (5.12)
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According to lemma 1, one could give also alternative definitions With instead ofR in
relations (5.9) and (5.12).
Let us verify that relations (5.7), (5.8), (5.10) and (5.11) are of the kind considered in
section 3.
We take first relations (5.7) into account. We find
(¢ +a7 9P g+ HIP @ P + P + &P’
D q1- R ® @+ R + (g 1+ Ri) ® (g1 R)
=21®1-Ry®R) +(@—-q¢HA®R+Ry®1).
Using relation (2.8) we can writ&,, explicitly and check that relations (5.7) amount to
relations

PffljkA;r,hA;k =0 (5.13)

AL AL - RIFAL AL, =0 ifa<B. (5.14)
Similarly one verifies that: (1) relations (5.8) amount to relations

P Ak AT =0 (5.15)

AT APT RV APK A% — 0 if o < B (5.16)
(2) that relations (5.10) amount to relatigns

P+Z]{A;h’4;k =0 (5.17)

AL LA+ RTUEAL AT =0 ifa<p: (5.18)
(3) that relations (5.11) amount to relations

P AYk AT =0 (5.19)

A%T APT 4 R APk gk — 0 if o < B. (5.20)

On the other hand, relations (5.9) and (5.12) dog B arenot of the type (3.7), (3.8)
found in section 3; in fact, in a similar way one can show that relation (5.9) takes the form

A%AT, — RISAT A% =0 a#B (5.21)
AYAS, — 851 — qRIGAT A — (g —qH) Y RiSA; AP =0 (5.22)
B>
whereas relation (5.12) amounts to
A%AL L+ RISAT A =0 a#p (5.23)

AYAY, = 81+ g IRGAS A — (g — gD Y RigAS AP = 0. (5.24)
B<a
Relations (5.21) and (5.23) specialized to the case B coincide with relations (3.7);
specialized to the case < 8, they differ from relations (3.8). Relations (5.22) and (5.24)
differ from relations (3.3) by the additional terms with coefficigpt— ¢ —1).

The subalgebrauvt (resp..M’) generated byAT's (resp.A*’s) has the same Poindar
series of the subalgebra generated by classjta (resp.a®*’s), because of relations (5.13)
and (5.14) (resp. (5.15) and (5.16)) in the Weyl case and because of relations (5.17) and
(5.18) (resp. (5.19) and (5.20)) in the Clifford case. Since relations (5.9) and (5.12) allow
to change the order ofil’s and A®’s in any product, we conclude with the following
proposition.

1 These are also of the type considered in section 3, provided we invert the order of Greek indices.
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. q L , .
Proposition 3.The algebrasAy g, )xsi,wv).4, NAVE the same Poin@arseries as their
classical counterparts.

Finally, let us ask abouk-structures. Whery € R* the Hopf algebraGL,(M) x
SL,(N) admits the compact sectioki, (M) x SU,(N) [10]. The deformed Heisenberg
algebras defined by relations (5.7)—(5.12) admit a natlig@ah/) x SU,(N)-covariants-
structure given by

(AMy = AT (5.25)
this can be easily checked by applying tkigo relations (5.7)—(5.12) and by noting that
RT = R and thereforR” = R, P” = P.

Let us now take into consideration the cases that= SO, (N), Sp,(n). The projector
decomposition ofRy ® R = Y, 4,P" gives, = ¢%q72, —1,+¢>V, 547", where
the upper and lower sign refer 6, = SO,(N) and Sp,(n) respectively. The projector
decomposition ofR;' ® R = Y, 1,P* givesx, = —¢% —q 21, F¢*", £¢7V. In
both cases we always have more than one positive and more than one negatiBy
lemma 1 noGL,(M) x G, covariantg-deformed Weyl/Clifford algebra can be built by this
procedure.
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